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Abstract

The Domain Name Systems is a globally distributed realtime database.
We look at aspects of its design, and how that affects what kinds of da-
ta can be stored in it, and what usage patterns are more or less success-
ful.

Introduction

Over the past 30 years the Domain Name System has become an inte-
gral part of the operation of the Internet. Due to its ubiquity and good
performance, many new applications over the years have used the
DNS to publish information. But as the DNS and its applications have
grown farther from its original use in publishing information about In-
ternet hosts, questions have arisen about what applications are appro-
priate for publication in the DNS, and how one should design an appli-
cation to work well with the DNS.

The DNS basically is a client-server system that provides a map from a
tree-structured name-space into arrays of typed records. That is, a
client sends a name and a record type to a server which has authorita-
tive data for that name, and the DNS server returns a set of records.
The set may be empty (often known as NOERROR from the name of
the status code), or it may be nonexistent (NXDOMAIN) which is se-
mantically different.

The names are a sequence of string labels representing a path from the
root of the DNS to a node. Although the DNS protocol is almost 8-bit
clean (other than case folding the 26 upper and lower case letters), by
convention all labels are composed of 7-bit ASCII printing characters.
Names are conventionally written with a dot separating the labels, al-
though a dot is a valid character in a label.

The records returned have types known as RRTYPEs. Each RRTYPE
has a well-defined format for the fields in the record. Common
RRTYPEs are A, which includes an IPv4 address, and MX, which in-
cludes the name of host that handles mail for a domain and a number
that gives the relative priority of multiple hosts handling mail for a do-
main. Although it is possible to make an "any" query, because of the
way that DNS caches work, the only reliable way to determine if a par-
ticular kind of record is present at a name is to make a query for that
record type.

Taughannock Networ ks provides strategic consulting, design, and prototype implementation on e-
mail and Internet infrastr ucture. +1 607 330 5711 or info@taugh.com
Copyr ight © 2012 Taughannock Networ ks. All rights reserved. You may reproduce this document
unmodified in its entirety. Any other use requires specific permission.



The Design of the Domain Name System

Delegation and caches

The DNS divdes up its work using delegation and caches. A DNS server
can delegate the tree at and below any node, known as a zone, to one or
more other servers. In response to a query for a name in the delegated
tree, the delegating server returns a list of the servers to which the tree
is delegated. The client then resends the query to one of those servers.
Chains of three or four levels of delegation are common. Each zone
can be (and typically is) managed separately from the zones above it
and below it.

Rather than send queries directly to the authoritative servers, most
DNS clients instead query a local cache which queries the authoritative
servers on the client’s behalf. This has two practical advantages. One
is that the cache handles all of the delegation following, as well as
some other name indirection due to CNAME and DNAME records, al-
lowing a much simpler query library in the client. The other is that the
cache remembers and reuses the results of previous queries, notably in-
cluding queries that provided delegation information. DNS caches are
believed to be highly effective, although actual data on their effective-
ness is surprisingly sparse. Hence applications with high query rates
and few repeated queries may cause problems for DNS caches, both
because of the amount of DNS traffic caused directly, and because the
results will replace other entries in caches, causing more DNS traffic to
re-fetch results that would otherwise have been available in the cache.

Provisioning systems

The set of records in each authoritative server is provided via some
kind of provisioning system. The original model in RFCs 1034 and 1035,
the 1987 documents that are the basic definition of the DNS, assumed
that the data for each zone would be hand edited into a text file known
as a master file which is then loaded into one of the authoritative
servers, known as the master for the zone. The rest of the zone’s
servers, known as slaves, use AXFR queries to copy over the zone, and
recopy whenever the zone changes. A more recent modified version of
AXFR called IXFR allows slave servers to copy just the changes to
modified zones.

Although there are still plenty of zones that work this way, it doesn’t
scale very well for servers with very large zones, or that serve many
different zones. Since the details of server provisioning, including the
distinction between master and slave servers, are not apparent to DNS
clients, many servers are provisioned in other ways, such as storing the
zone data in a data base, using a web-based front end to manage data
base or text zone data, or in some cases such as rbldnsd (the server
used for most DNS blacklists and whitelists) to store the zone data in
an entirely different form and create the DNS responses on the fly.
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Although provisioning systems have not gotten a lot of attention from
the DNS community, they are a key part of the DNS system. Most no-
tably, provisioning systems are the main reason that it is difficult to de-
ploy new DNS RRTYPEs, since the provisioning systems tend to have
specific support for each kind of record, and need to be upgraded to
handle each new record type. Limitations of provisioning systems are
also a major reason that non-ASCII domain names are encoded as
ASCII A-labels rather than putting the UTF-8 U-labels directly in the
DNS.

DNS names

The most important limitation of the DNS, compared to other data-
bases, is that it only does exact match lookups. That is, with a few mi-
nor exceptions, the name in the query has to match the name of the de-
sired records exactly. One exception is folding of upper and lower case
characters, which has little effect, the other is DNS wildcards.

Wildcards have always been part of the DNS, but the details of their
definition have been confusing. The definition was clarified by RFC
4592 in 2006.

Wildcards provide a very constrained form of pattern matching, telling
the server to synthesize records for all nodes below a specified node
that don’t have explicit records. That is, if there is a DNS record
named *.foo.example, it will match requests for some-
thing.foo.example, so long as there aren’t any records with that
explicit name. A single star as the leftmost component of a domain
name is the only form of wildcard; stars anywhere in a name are are
just normal characters.

In practice, this turns out to be of limited use, with typical applications
being web servers that catch any variation of their name, e.g.
http://anything.example.com, and mail systems that give each user a
separate domain, e.g., mailbox@anyuser.example.com. Wildcards do
not work with prefixed names, such as _attribute.*.example.com, nor
are they useful to handle ranges of queries except in some very styl-
ized cases.

Some applications have proposed sequences of multiple queries to
simulate range queries. For example, DNS blacklists (DNSBLs) map IP
addresses into DNS names using a modified version of the mapping
used for reverse DNS. If a DNSBL is called dnsbl.example, the en-
try for the IP adresss 12.34.56.78 would be 78.56.34.12.dnsbl.ex-
ample.

When a DNSBL wants to list a range of IP addresses, it needs concep-
tually to include a record for each name corresponding to an IP ad-
dress in the range. For DNS servers that use traditional master files,
since each component in the name represents eight bits of the IP ad-
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dress, this involves breaking an IPv4 range into a minimal covering set
of blocks on eight bit boundaries, adding wildcards for each block, and
an individual entry for each individual address not in a larger block.

Some people have suggested approaches to try to optimize range list-
ings by querying for prefixes of a desired address, e.g., if the address is
1.2.3.4 and the name is 4.3.2.1.dnsbl.example, query for
2.1.dnsbl.example to see of any of the 1.2.xx.xx range of addresses
are listed. According to DNS rules, the query should return NXDO-
MAIN if there are no entries in the range, or NODATA if there are
some. While this technique might work, it is quite fragile, due to DNS
servers that don’t correctly distinguish between NXDOMAIN and NO-
DATA responses, currently including the most popular DNSBL server
rbldnsd. Also, at this point there is no evidence that the probes really
would save queries or cache entries compared to just querying for each
address as needed. In principle, a DNS cache could synthesize its own
NXDOMAIN responses for names below existing NXDOMAIN (any-
thing in *.2.1.dnsbl.example here), but again, it’s fragile, and as
far as I know, no widely used DNS cache does that other than as an ex-
periment.

As a general rule, a successful DNS application makes one query, or at
most a small bounded number of queries for each application call.
Note that the issue of DNS range queries is separate from that of appli-
cation ranges. Most notably, the NAPTR RRTYPE, defined in RFC
3403, used to find servers for things like telephone numbers, includes a
string which is interpreted by applications as a regular expression to be
matched against a source string to find a domain for a subsequent
lookup. While one can debate the wisdom of the rather complicated
application design of which NAPTR is a part, it does not involve any
pattern matching in the DNS. The NAPTR lookup algorithm makes a
small set of specific DNS queries which the DNS handles without diffi-
culty. It does involve potential provisioning problems, since regular
expressions include a lot of special characters and escape sequences,
something that few other RRTYPEs include and whose handling by
provisioning software may not be well debugged.

DNS delegation

The DNS gains considerable administrative flexibility from its delega-
tion structure. Each zone cut, the place in the DNS name tree where
one set of DNS servers hands off to another, offers the option to dele-
gate the administration of a part of the DNS at the delegation point.
But for the delegation to work well, the delegation structure has to
match the name structure.

In particular, a  zone cut can only happen between name components,
not within them. Assume, for example, the example.com organiza-
tion wanted to delegate names starting with A to one group, and
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names starting with B to another group, so they delegate able.exam-
ple.com, acme.example.com, and adept.example.com to the
first group, and baker.example.com, beaver.example.com, and
bingo.example.com to the second group.

The DNS doesn’t make that easy, since all of those names are part of
the same zone. It would be possible to handle it by custom program-
ming in the provisioning system that manages the example.com zone
to manage who can update what names, but it would be a lot easier
(from a DNS point of view) to add an extra name level and change the
names to able.a.example.com, acme.a.example.com,
adept.a.example.com, baker.b.example.com, beaver.b.ex-
ample.com, and bingo.b.example.com. Then the organization
can delegate a.example.com to the first group and b.example.com
to the second group, and let them each manage its own zone. This as-
sumes, of course, that it’s acceptable for the applications to use the
names with the extra components.

Reverse DNS delegation

The reverse DNS (rDNS) for IPv4, which allows you to look up a do-
main name corresponding to an IP address, is the part of the DNS
where this problem has occurred most often. Originally, blocks of IP
address space were allocated on 8, 16, and 24 bit boundaries. The
structure of the rDNS matches these boundaries since it uses a name
component for each eight-bit octet of the address. That is, if an organi-
zation were allocated the IP address range 12.34.xx.xx, they’d also be
delegated the rDNS for 34.12.in-addr.arpa.

As soon as CIDR came along, allowing IP address space allocation at
arbitrary bit boundaries, rDNS name delegation became a mess. For
ranges larger than /24, delegation is straightforward but tedious. For a
/22, the address space holder is separately delegated each of the four
/24’s in the /22, e.g., for 12.34.56/22 the holder would get the rDNS
for 12.34.56.x, 12.34.57.x, 12.34.58.x, and 12.34.59.x, which are
56.34.12.in-addr.arpa through 59.34.12.in-addr.arpa.

But there’s no practical way to delegate the rDNS for ranges smaller
than a /24 using the normal DNS delegation technique. (In theory one
could add a zone cut for each individual rDNS name, making each its
own zone, but that would be hundreds of tiny zones, something that
DNS servers don’t handle well.) Since the names in the rDNS happen
to be known in advance, one per IP address, and the number of names
in a /24 is only 256, people have kludged around it with groups of
CNAMEs, one per allocated address, aliased to names with an extra
component to allow normal DNS delegation to work. For example, if
someone were allocated the /27 range 12.34.56.64 through 12.34.56.95,
create these CNAME aliases:
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64.56.34.12.in-addr.arpa CNAME 64.64-95.56.34.12.in-addr.arpa
...
95.56.34.12.in-addr.arpa CNAME 95.64-95.56.34.12.in-addr.arpa

Then do one zone delegation of 64-95.56.34.12.in-addr.arpa.
This hack was described in RFC 2137 in 1998, so it’s well established,
but it’s still pretty ugly.

IPv6 avoided this particular problem by noting that the smallest plau-
sible allocation boundaries for the huge IPv6 addresses are four-bit
groups, and making IPv6 rDNS names have a separate component for
each four-bit nibble, so it’s always possible to make a zone cut that
matches an IP space allocation. The moral here is to think hard about
what you might want delegate in the future when designing your
name space.

Conversely, it is also possible to over-decompose DNS names. DNS-
BLs use the same multi-component name structure as rDNS, but gain
little benefit from it other than the range wildcards discussed above.
Since each DNSBL is invariably managed by a single organization, in
the common case that DNSBLs are served using DNS servers that
don’t use wildcards, there’s no benefit to decomposing the name into
multiple components. It would work just as well to use names like
127-0-0-2.dnsbl.example, or for IPv6, a 32 character hex number
like 200104701f07112600005370616d6d79.dnsbl.example.

Applications should not assume that any particular name boundary is
a delegation point, in particular, that the boundary between a top-level
and second-level domain is one. Different domains have different poli-
cies, and they are under no obligation to tell you what those policies
are. While the management of com and google.com are different, uk
and co.uk are the same, while the third level google.co.uk is some-
one else. It’s also unwise to assume that if a TLD has delegated some
names at the second or third level, that all of their delegations are at
the same level. For example, ca, qc.ca, and montreal.qc.ca are
all run by CIRA, but google.ca is not.

In the cases above, there’s a zone cut at the place where the manage-
ment changes, but zone cuts do not necessarily represent administra-
tive boundaries either. In many cases a single organization will divide
up its own namespace into multiple zones for its own administrative
convenience.

There are places like publicsuffix.org that try to keep lists of delegation
points for TLDs, but they are only as accurate as the data people con-
tribute to them, which is of highly variable completeness.
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Global data consistency

Many databases go to great effort to present a globally consistent view
of the data they control, since the alternative is to lose credit card
charges and double-book airline seats.

The DNS has never tried to to that. The data is roughly consistent, but
not perfectly so.

Multiple servers and caches

Most zones have multiple DNS servers. The servers usually do not up-
date their copies of the zone data at the same time, so one server may
have slightly newer data than another. RFC 1034 describes the method
that many zones use to keep in sync, with one server as the master, and
the rest as slaves use AXFR to copy over updated versions of the zone
as needed. The zone’s SOA record contains some time values to tell
the slaves how often to check. Although in theory one could crank the
refresh interval down to one second, in practice refresh intervals are an
hour or more. Hence it is quite common for the authoritative servers
to be slightly out of sync.

Furthermore, DNS caches remember previous queries, up to the TTL
provided by the server when the query was answered. If the data
changes, a cache will not re-query until the TTL expires. Although it’s
possible for a server to set the TTL to zero, meaning not to cache the
data, typical TTLs are from minutes to days. Adding to the excitement,
caches do not always honor the requested TTL, sometimes applying
minimum or maximum retention times.

As a result, "flash cuts" where the DNS changes and all clients can im-
mediately see the new data don’t work. Instead, DNS changes need to
be done in ways that allow for the old and new data to coexist for a
while. For example, when changing the IP address of a server, rather
than trying to crank the TTL down to zero and forcing all the zone’s
servers to update at once, it’s a lot easier if one can run the service in
parallel on the old and new IP addresses long enough for all of the
servers to update on their normal schedule, and for cached entries to
expire.

Deliberately inconsistent DNS

Some DNS servers deliberately return different answers to different
clients. The primary reasons are for "split horizon" DNS and for load
sharing.

Split horizon means that clients on different networks get different an-
swers. Most often it’s that clients within the organization’s own net-
work get a larger set of names than the rest of the world does, or
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names resolve to addresses on the internal network while external
clients get addresses on a firewall system. I’ve also used split horizon
to deal with broken clients or caches that send high volume streams of
bogus queries, sending them delegations to name servers on non-exis-
tent networks.

Load sharing in its simplest form involves rotating through a set of
records in responses, so that clients are spread across a set of mirror
web or mail servers. In more sophisticated forms, the DNS server tries
to guess where the client is, and tries to return the address of a server
topologically or geographically close to the client.

Split horizon DNS is somewhat defensible as a legitimate DNS config-
uration, since the responses to each client are consistent, and for the
usual inside/outside split, organizations should know what addresses
are on their own network, with appropriate router configurations to
keep out forged outside traffic purporting to be from their own net-
work.

Load sharing shouldn’t hurt anything (much) so long as the server is
prepared for its guesses about the client’s location to be completely
wrong. As an obvious example, people all over the world use Google’s
public DNS cache. At this point, DNS-based load sharing is probably a
necessary evil, but given the ever more convoluted topology of the In-
ternet, it is a poor idea to design new applications that depend on it.

Large data in the DNS

Most DNS queries are made via UDP, a single packet for query and a
single packet for the response, with the packet size traditionally limit-
ed to 512 bytes. This limits the payload of the returned records in a re-
sponse packet to about 400 bytes, after allowing for the overhead in a
DNS response. Many clients and caches (about half in my experience)
support the EDNS0 extension, which lets the client specify the maxi-
mum packet size, usually 4096. The length fields in DNS records are
16 bits, so the absolute limit on a packet or a record is 64K bytes. The
DNS spec says that if a response is too big to fit in a UDP packet, the
server sends a partial response with the truncation bit set, which tells
the client to retry the query over TCP.

Until a few years ago, it was rare to see a DNS response that didn’t fit
in a 512 byte packet other than for AXFR and IXFR. Now, as DNSSEC
is starting to become more widespread, larger packets are becoming
more common, since DNSSEC adds a great deal of signature material
to every response and requires EDNS0.

Although it is possible in principle to put large chunks of data into the
DNS, up to 64K, the bigger a response is, the less likely it is to be re-
turned reliably. Some DNS servers still don’t support TCP, far too
many firewalls don’t allow TCP DNS traffic, a few broken firewalls
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won’t pass DNS packets bigger than 512 bytes, and DNS caches are not
tuned to cache large data well. I’ve seen the occasional proposal to
store chunks of XML in the DNS, but they generally seem to be from
people who want to see XML everywhere.

Since a TCP query requires a UDP query and response, which includes
the truncation flag, and a subsequent TCP session, a more sensible way
to handle large data is to put a pointer to the data such as a URI in the
DNS which can be returned via UDP, and then have the application
use another scheme such as HTTP to retrieve the large data. That’s
about the same amount of net traffic (a UDP round trip followed by a
query and response via TCP), but HTTP servers and HTTP caches are
designed to handle large data that DNS servers and caches aren’t.

Overloaded record types

All the records in the DNS are strongly typed. Each record includes an
RRTYPE, a small number, which defines both the format of the record
and what the record means. It is possible and common to have differ-
ent record types with the same format, but different meanings. For ex-
ample, the NS (name server), CNAME (canonical name), and PTR
(name pointer) records all contain a single domain name, but their se-
mantics are quite different.

The original plan was that as people came up with new kinds of data
to store store in the DNS, they’d define and add new RRTYPEs. But for
a variety of good and bad reasons, many DNS applications have
reused existing RRTYPEs rather than registering new ones. Until it be-
comes a lot easier to add new types to DNS servers and provisioning
systems, this seems unlikely to change.

When an RRTYPE is reused, there are two ways to tell the new use
from the original use, by name and by value. The most common tech-
nique is to put the RRs with reused types at names where they are un-
likely to collide with the original usage. For example, DNSBLs reuse A
records, but they are in their own branches of the namespace where
host names never occur, so in theory there should be no collision. In
practice, collisions occur all the time, when the domain name of an
abandoned DNSBL is re-registered by someone else who parks it with
a wildcard A record, thereby causing the abandoned DNSBL to appear
to list everything. Well-written DNSBL client code can defend against
this by making the recommended checks in RFC 5782 intended to de-
tect inappropriate wildcards, but it remains a problem.

A variant of this approach is to put reused records at prefixed names.
The data for an attribute of example.com is stored at _at-
tribute.example.com, for a suitable attribute. This approach has
been reasonably successful in DKIM and VBR, putting TXT records at
prefixed names, where the contents have a format defined by the
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DKIM or VBR application. But they are still subject to collisions due to
unwise wildcards, and suffer from the related name problem I address
below.

The other way to manage reused records is by value, most often by
putting a specified string at the beginning of a reused TXT record. For
example, DKIM records usually start with "v=DKIM1" and SPF records
with "v=spf1". This also works reasonably well as a way to deal with
inappropriate wildcards, and allows multiple applications to coexist at
the same name, but at the cost of extra application logic to check the
records and ignore the ones without the string the application expects.
It also scales poorly. A request for the TXT records at a name always re-
turns all of the TXT records, so the responses will be cluttered with un-
related records as more applications add them. (The design of the DNS
anticipated this problem, which is why requests normally ask for a
particular record type rather than for all records at a name.)

Related names are not related

A poorly appreciated aspect of the DNS is that there is no inherent re-
lationship between similar looking names. That is, to a person the
names example.com and www.example.com may look obviously re-
lated, but to the DNS, they’re just two different names. Names do exist
in a tree, and as we saw above, if a name exists in a tree, all names
above it (closer to the root) exist, even if there is no data at some of
those names. Conversely, if a name does not exist, all possible names
below it don’t exist either. But if two names both exist, the DNS has no
good way to describe the relationship between them.

The way to make two names "the same" in the DNS is to use a
CNAME, for a single name, or a DNAME, for all the names below a
name. When a DNS cache receives a CNAME result in response to a
non-CNAME query, it will repeat the query for the target of the
CNAME, and return both the CNAME and the target record in the re-
sponse to the original request. A DNAME is sort of a generalized
CNAME, and says that the names in the tree below one name are alias-
es for the tree below another name. That is, if a is a DNAME for b,
then x.a is an alias for x.b. DNAMEs have been around since 1999,
but for the benefit of caches that still don’t understand them, when a
server returns a DNAME answer, it also synthesizes suitable CNAMEs
as needed when replying for a name below the DNAME.

CNAMEs have been around since the dawn of the DNS, but they can
only partially make one name a synonym for another. A CNAME only
provides an alias for its own name, and not for any prefixed name. So
if foo.example is a CNAME pointing to bar.example, queries for
_prefix.foo.example won’t work unless there are additional
CNAMEs to point to every prefix defined for bar.example. This
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makes the provisioning considerably more difficult, since it means ev-
ery time you add or change a prefixed name record, you have to know
everyone who’s pointing a CNAME at your name, and tell them to add
or change the prefix, exactly the sort of error-prone manual processing
that computers were supposed to avoid.

When a DNS request is satisfied via CNAMEs, the client can see the
chain of CNAMEs. So when a DNS client or cache looks up a prefixed
name and finds nothing, it could, in principle, make a query for the
base name, see if there’s a CNAME, and if so make a prefixed query for
the target, in this case _prefix.bar.example. Prefixed names have
existed for 15 years (since the invention of SRV records in RFC 2052)
and nobody to my knowledge has done anything special about
CNAMEs and prefixes, so it seems a little late to start now. DNAMEs
alias the entire subtree below a name, which deals with the prefixed
names, but doesn’t alias the name itself, limiting its utility for aliasing
specific names and their variants.

Names outside the DNS

In the early years of the DNS, domain names were typically resolved to
A records which were used to identify a host running a service. With
the notable exception of e-mail, once the host was identified, the name
no longer mattered. Another way to look at it is that for traditional
services like telnet and FTP, servers don’t know or care what their
names are. If you want to give a Telnet server a new name, just point a
new A or CNAME record at it, and it’ll work.

E-mail was and is different. While a mail server doesn’t need to know
what its name is, it definitely needs to know for what domains it han-
dles mail, i.e., what MX records should be pointing at it. This means
that CNAMEs pointing at a name with an MX generally won’t do what
you’d want.

In the early World Wide Web, servers didn’t need to know their names,
since each logical server had a separate IP address. As the Web grew
rapidly, the virtual server feature was added to conserve IP addresses.
It allows many names to resolve to the same IP address, with the Web
server returning different content for different names.

What mail and the Web have in common here is that even after all of
the DNS queries are done, and the names are all resolved to IP ad-
dresses, and a TCP session is active to the Web or mail server, the do-
main names appear in the data stream. In some cases, particularly
mail, this seems to be unavoidable, but it makes the provisioning much
more difficult, as the DNS and the application configuration need to be
kept in sync.
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Prefixed names (which we mentioned above) can present problems
when a server has multiple names. The key observation is that
CNAMEs work for servers that don’t know their names, and prefixes
work for servers that do. We had an argument in the Anti-Spam Re-
search Group a while ago about possible ways to tell a user mail pro-
gram where to send spam button complaints. One possibility was to
put the info in a record at a prefix of the POP or IMAP server name like
_report.server.example. I didn’t think that would work very
well because POP and IMAP servers don’t know their names, and it is
common in hosted mail systems to use CNAMEs for the server names.
A server can have thousands of CNAMEs pointing at it, all of which
would need an extra manually configured CNAME for each prefix in
use.

On the other hand, nobody ever points a CNAME at a name with an
MX because it wouldn’t work without configuring the mail server to
know about the CNAME, and once it’s that complicated, everyone
adds another MX instead. Since there aren’t any CNAMEs used to
route mail via MXes, prefixed names for DKIM work just fine in prac-
tice.

Web servers are sort of a middle case. People use lots of CNAMEs to
point to web servers, but in IPv4 at least, they use them in very styl-
ized ways since most web servers use virtual names so again the DNS
and the server have to be coordinated.

To the extent applications can avoid this need to coordinate DNS and
non-DNS configuration, and have the results of the DNS queries com-
pletely identify the desired service, they will work much more smooth-
ly with the DNS. Ways to do this are to have adequate IP addresses
(there’s no need for virtual web servers in IPv6), to use SRV so that dif-
ferent services can be on different ports, or perhaps to use new
RRTYPEs that include a token that the client can present to the server
to tell which DNS record led it to the server.

The DNS technical community has been wrestling with the question of
how to make two DNS trees ‘‘the same’’ for quite a while. ICANN now
has a process to issue non-ASCII top-level domains in addition to the
traditional two letter codes, such as .ΡΦ in addition to .RU. In many
cases, the new domain is supposed to be the same as the existing one,
for some version of ‘‘same’’. After going through the arguments sever-
al times, I came to the conclusion−which I think was shared by most of
the participants−that nobody adequately understands what that same-
ness would mean technically. Whatever it might turn out to be, it’s un-
likely that the DNS could provide it, even with some improved version
of CNAME or DNAME.
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Since it’s now possible to have domain names in any script, the num-
ber of nominally equivalent domain trees is likely to increase, and if
the equivalence is supposed to be component by component, the num-
ber of nominally equivalent names will become huge. (That is, if A and
B are supposed to be equivalent to each other, and C and D to each oth-
er, then A.C, A.D, B.C, and B.D are all the same.) So what could we
do in the DNS to make the configuration easier?

With no changes to the DNS at all, applications could handle CNAME
or DNAME aliases. The result from a DNS lookup that’s redirected via
CNAMEs includes all the CNAMEs in the chain, so it would be easy
enough for an application getting a request for a domain it doesn’t rec-
ognize to do a suitable DNS lookup (MX for mail, A or AAAA for web,
etc.) and see if the unknown name is a CNAME for one it does know.
This has been possible for decades, but to my knowledge nobody’s ev-
er done it, suggesting that whatever problem it solves isn’t worth solv-
ing. Beyond the programming effort, this also presents a security issue
in that anyone can now point a CNAME at your server and make it
handle a domain you might not have wanted to handle.

The most plausible solution so far to that problem is a new CLONE
record that is sort of the inverse of CNAME, in which the primary
name lists all of the other equivalent names, and the name server ar-
ranges to handle all of them. DNS lookups for any of the equivalent
names also provide the primary name, and the DNSSEC signature is
adequate to prove that the equivalence is authorized by the primary.

This would require new coordination whenever one server delegates a
subtree to another, in that the second server would have to inherit all
of the cloned names that apply to the name delegated from the first
server, but it’s not hard to imagine ways that they could coordinate au-
tomatically. So far this is all hypothetical, and there’s still a lot of work
to be done getting DNSSEC more widely deployed before anything
like CLONE is likely to happen, but it’s one of the few ways in which
the DNS has any chance of interesting extensions.

Conclusion

The DNS is now over 25 years old. Considering its age, and how large
it has become, it works remarkably well. (If you’d told people in 1987
that the .COM zone would have 100,000,000 entries, they’d have
laughed at you.) But it still has design issues to be solved for the Inter-
net of the 21st century.
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